Why C++7?

* Popular and relevant (used in nearly every application domain):

+ end-user applications (Word, Excel, PowerPoint, Photoshop, Acrobat, Quicken,
games)

operating systems (Windows 9x, NT, XP; IBM’s K42; some Apple OS X)
large-scale web servers/apps (Amazon, Google)

central database control (Israel’s census bureau; Amadeus; Morgan-Stanley
financial modeling)

communications (Alcatel; Nokia; 800 telephone numbers; major transmission
nodes in Germany and France)

numerical computation / graphics (Maya)
device drivers under real-time constraints

 Stable, compatible, scalable

18.04.2018

Cvs.C++-1

« Cis a system programming language, whereas C++ is a general-purpose
programming language commonly used in embedded systems. C is procedural, so
it doesn’t support classes and objects like C++ does (although, despite being
object-oriented, C++ can be procedural like C, making it a bit more hybrid).

* Generally, you'd opt to use C over C++ if you didn’t want the extra overhead of
C++—however you can always just pick the features of C++ you want to use and
exclude the others.

Cvs.C++-2

C++is a superset of C

C++ has all the characteristics of C

Object-oriented! (Encapsulation, Data hiding, Inheritance, Polymorphism)

- Encapsulation: “black box” ~ internal data hidden. Inheritance: related classes share implementation and/or interface.
Polymorphism: ability to use a class without knowing its type

C++is C incremented
(orig., “C with classes”)

C++ is more expressive
(fewer C++ source lines needed than C source lines for same program)

C++ is just as permissive
(anything you can do in C can also be done in C++)

C++ can be just as efficient
(most C++ expressions need o run-time support;
C++ allows you to

manipulate bits directly and interface with hardware without regard for safety or ease of comprehension, BUT
hide these details behind a safe, clean, elegant interface)

C++ is more maintainable

(1000 lines of code - even brute force, spaghetti code will work;

100,000 lines of code ~ need good structure, or new errors will be
introduced as quickly as old errors are removed)

Design goals of C++

Backward compatibility with C
(almost completely — every program in K&R is a C++ program — but
additional keywords can cause problems)

Simplicity, elegance
(few built-in data types, e.g., no matrices)

Support for user-defined data types
(act like built-in types; N.B. Standard Template Library (STL))

No compromise in efficiency, run-time or memory
(unless “advanced features” used)

Compilation analysis to prevent accidental corruption of
data
(type-checking and data hiding)

Support object-oriented style of programming

18.04.2018

C++ Basic Syntax

When we consider a C++ program, it can be defined as a collection of objects
that communicate via invoking each other's methods. Let us now briefly look
into what a class, object, methods, and instant variables mean.

* Object - Objects have states and behaviors. Example: A dog has states -
color, name, breed as well as behaviors - wagging, barking, eating. An
object is an instance of a class.

* Class - A class can be defined as a template/blueprint that describes the
behaviors/states that object of its type support.

* Methods — A method is basically a behavior. A class can contain many
methods. It is in methods where the logics are written, data is manipulated
and all the actions are executed.

* Instance Variables - Each object has its unique set of instance variables. An
object's state is created by the values assigned to these instance variables.

C++ Program Structure-1

#include <iostream>

using namespace std;

// main() 1is where program execution begins.
int main() {
cout << "Hello World"; // prints Hello World
return 0;

C++ Program Structure-2

» The C++ language defines several headers, which contain information
that is either’ necessarg or useful to your program. For this program,
the header <iostream> is needed.

» The line using namespace std; tells the cochi_Ie_r to use the std
namespace. Namespaces are a relatively recent addition to C++.

The next line '// mainq is where program execution begins.' is a
single-line comment available in C++. Single-line comments begin with
// and stop at the end of the line.

'Ighe_ line int main() is the main function where program execution
egins.

The next line cout << "This is my first C++ program.”; causes the
message "This is my first C++ program" to be displayed on the screen.

The next line return 0; terminates main()function and causes it to
return the value 0 to the calling process.

Compile and Execute C++ Program (Linux)

Let's look at how to save the file, compile and run the program. Please follow
the steps given below -

* Open a text editor and add the code as above.
* Save the file as: hello.cpp
* Open a command prompt and go to the directory where you saved the file.

* Type 'g++ hello.cpp' and press enter to compile your code. If there are no
errors in your code the command prompt will take you to the next line and
would generate a.out executable file.

* Now, type 'a.out' to run your program.
* You will be able to see ' Hello World ' printed on the window.

Compile and Execute C++ Program (Linux)

$ g++ hello.cpp
$ /a.out
Hello World

« Make sure that g++ is in your path and that you are
running it in the directory containing file hello.cpp.

* You can compile C/C++ programs using makefile.

18.04.2018

C++ Identifiers

* A C++ identifier is a name used to identify a variable, function, class,
module, or any other user-defined item. An identifier starts with a letter A
to Z or a to z or an underscore (_) followed by zero or more letters,
underscores, and digits (0 to 9).

* C++ does not allow punctuation characters such as @, S, and % within
identifiers. C++ is a case-sensitive programming language. Thus, Manpower
and manpower are two different identifiers in C++.

* Here are some examples of acceptable identifiers -

mohd zara abc move_name a_123
myname50 _temp j a23b9 retval

Initializing Local and Global Variables

When a local variable is defined, it is not initialized by the system,
you must initialize it yourself. Global variables are initialized
automatically by the system when you define them as follows —

Data Type Initializer
int 0
char \0'
float 0
double 0

pointer NULL

Storage Classes in C++

A storage class defines the scope (visibility) and life-time of variables
and/or functions within a C++ Program. These specifiers precede the
type that they modify. There are following storage classes, which can
be used in a C++ Program

* auto

* register
* static

* extern

* mutable

The auto Storage Class

The auto storage class is the default storage class for all local variables.

int mount;
auto int month;

The example above defines two variables with the same storage class,
auto can only be used within functions, i.e., local variables.

18.04.2018

The register Storage Class

The register storage class is used to define local variables that should be
stored in a register instead of RAM. This means that the variable has a
maximum size equal to the register size (usually one word) and can't have
the unary '&' operator applied to it (as it does not have a memory location).

{

register int

miles;

The register should onIY be used for variables that require quick access such
s

as counters. It should a

o be noted that defining 'register’

oes not mean

that the variable will be stored in a register. It means that it MIGHT be stored
in a register depending on hardware and implementation restrictions.

The static Storage Class-1

* The static storage class instructs the compiler to keep a local variable
in existence during the life-time of the program instead of creating
and destroying it each time it comes into and goes out of scope.
Therefore, making local variables static allows them to maintain their
values between function calls.

* The static modifier may also be applied to global variables. When this
is done, it causes that variable's scope to be restricted to the file in
which it is declared.

* In C++, when static is used on a class data member, it causes only one
copy of that member to be shared by all objects of its class.

The static Storage Class-2

#include <iostream>

func (void) ;

static int count =

main() {

while (count--) {
func() ;
}
return
}
void func(void) {
static int i =

i+4;
std::cout << "
std::cout << " a

Global variable */

nt is " << count << std:

rendl;

e = S SO SR

is
is
is
is
is
is
is
is
is
is

and
and
and
and
and
and
and
and
and
and

count
count
count
count
count
count
count
count
count
count

is
is
is
is
is
is
is
is
is
is

The extern Storage Class-1

* The extern storage class is used to give a reference of a global variable that
is visible to ALL the program files. When you use 'extern' the variable
cannot be initialized as all it does is point the variable name at a storage
location that has been previously defined.

* When you have multiple files and you define a global variable or function,
which will be used in other files also, then extern will be used in another
file to give reference of defined variable or function. Just for
understanding extern is used to declare a global variable or function in
another file.

* The extern modifier is most commonly used when there are two or more
files sharing the same global variables or functions as explained below.

18.04.2018

The extern Storage Class-2

First File: main.cpp Second File: support.cpp
#include <iostream>
extern int count;

void write extern(void) {

#include <iostream>

int count ;

extern void write_extern(); std::cout << "Count is " <<
main () { count << std::endl;
count = 5, }

Here, extern keyword is being used to declare count in another
file. Now compile these two files as follows -

} Sg++ main.cpp support.cpp -0 write

This will produce write executable program, try to execute
write and check the result as follows -

S./write

5

write extern();

